If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x=(x^2+x)/40=((x*x*x)-x^2)/41+(x*x*x*x*x*x*x*)+2
We move all terms to the left:
x-((x^2+x)/40)=0
We multiply all the terms by the denominator
x*40)-((x^2+x)=0
Wy multiply elements
40x^2=0
a = 40; b = 0; c = 0;
Δ = b2-4ac
Δ = 02-4·40·0
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$x=\frac{-b}{2a}=\frac{0}{80}=0$
| 9r-8r=9 | | 2x+7-4x+11=18 | | 33=t-301 | | m-703=-142 | | 2(g-5)=4 | | 10j-9j=4 | | x=x^2+x=(x*x*x)-x^2 | | 8r-4r=-16 | | -v=12.5 | | v-6.34=-0.34 | | .25×130=x | | w+26=564 | | k+-373=-101 | | (325x^2+50)/4=7 | | 325x^2+50/4=7 | | g+17=949 | | -3(v+1)=-9v-9 | | (9,-1);m=(4)/(3) | | 19b-14b=15 | | t/16=-16 | | -2x-41=9(x+4) | | 8/5x=16/3 | | V=(2x)(3x+1)(5x-6) | | 29=j-38 | | 19b−14b=15 | | 15/9=12/x | | 8x+x+5=14 | | g+4=85 | | 2(3+7X-1+15x=2 | | 5=v+-25 | | t-12=3t+7 | | 6x-5=-5+22x |